Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 910
Filter
1.
Mol Biomed ; 5(1): 17, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724687

ABSTRACT

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Subject(s)
Genetic Heterogeneity , Melanoma , Molecular Targeted Therapy , Uveal Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/therapy , Melanoma/drug therapy , Molecular Targeted Therapy/methods , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Mutation , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Liquid Biopsy/methods
2.
Front Immunol ; 15: 1355887, 2024.
Article in English | MEDLINE | ID: mdl-38745646

ABSTRACT

Breast cancer (BC) stands out as the cancer with the highest incidence of morbidity and mortality among women worldwide, and its incidence rate is currently trending upwards. Improving the efficiency of breast cancer diagnosis and treatment is crucial, as it can effectively reduce the disease burden. Circulating tumor DNA (ctDNA) originates from the release of tumor cells and plays a pivotal role in the occurrence, development, and metastasis of breast cancer. In recent years, the widespread application of high-throughput analytical technology has made ctDNA a promising biomarker for early cancer detection, monitoring minimal residual disease, early recurrence monitoring, and predicting treatment outcomes. ctDNA-based approaches can effectively compensate for the shortcomings of traditional screening and monitoring methods, which fail to provide real-time information and prospective guidance for breast cancer diagnosis and treatment. This review summarizes the applications of ctDNA in various aspects of breast cancer, including screening, diagnosis, prognosis, treatment, and follow-up. It highlights the current research status in this field and emphasizes the potential for future large-scale clinical applications of ctDNA-based approaches.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Circulating Tumor DNA , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/blood , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Female , Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Prognosis
3.
Cancer Cell ; 42(5): 727-731, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38701791

ABSTRACT

As immunotherapy makes its way into the perioperative setting, a growing number of clinical trials are expanding the evidence base for resectable non-small cell lung cancer (NSCLC) management. Identifying the optimal treatment pattern-whether it's neoadjuvant, adjuvant, or a combination of both-is a crucial next step, particularly in pinpointing which patients benefit the most. This decision-making process requires a multi-disciplinary treatment team capable of utilizing tissue and plasma genomic testing to inform therapeutic choices. Leveraging the perioperative treatment platform, it remains pivotal to integrate circulating tumor DNA (ctDNA) monitoring into clinical trial design efficiently and provide clear guidance on treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Immunotherapy/methods , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Neoadjuvant Therapy/methods , Clinical Trials as Topic
4.
Clin Transl Med ; 14(5): e1652, 2024 May.
Article in English | MEDLINE | ID: mdl-38741204

ABSTRACT

BACKGROUND: Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS: A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS: Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS: HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , Early Detection of Cancer , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Female , Male , DNA Methylation/genetics , Middle Aged , Prognosis , Early Detection of Cancer/methods , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged , Adult
5.
Lakartidningen ; 1212024 May 07.
Article in Swedish | MEDLINE | ID: mdl-38712636

ABSTRACT

To investigate the  clinical use of analyzing circulating tumor DNA in a clinical setting we present a pilot study comprising 93 patients from individuals with suspected lung cancer. The study aimed to evaluate the capability of analyzing circulating tumor DNA at the initial medical visit in order to detect genetic changes and mutations associated with lung cancer in plasma samples. Tumor DNA from plasma was extracted and analyzed with Next Generation Sequencing (NGS) and the result was compared with a matched tumor tissue collected in close connection from the same individual. Cancer-associated genetic mutations could be confirmed in about 60 percent of the plasma samples, and we observed a higher degree of conformance in patients with a more advanced disease. The results from the study provide valuable insights for an early clinical use of analyzing circulating tumor DNA in cases of suspected lung cancer, which could contribute to improving early diagnosis and treatment strategies for patients with lung cancer.


Subject(s)
Circulating Tumor DNA , Early Detection of Cancer , Lung Neoplasms , Mutation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Female , Middle Aged , Early Detection of Cancer/methods , Pilot Projects , Male , Aged , High-Throughput Nucleotide Sequencing , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Adult , Aged, 80 and over
6.
JCO Precis Oncol ; 8: e2300531, 2024 May.
Article in English | MEDLINE | ID: mdl-38723230

ABSTRACT

PURPOSE: Conventional surveillance methods are poorly sensitive for monitoring appendiceal cancers (AC). This study investigated the utility of circulating tumor DNA (ctDNA) in evaluating systemic therapy response and recurrence after surgery for AC. METHODS: Patients from two specialized centers who underwent tumor-informed ctDNA testing (Signatera) were evaluated to determine the association between systemic therapy and ctDNA detection. In addition, the accuracy of ctDNA detection during surveillance for the diagnosis of recurrence after complete cytoreductive surgery (CRS) for grade 2-3 ACs with peritoneal metastases (PM) was investigated. RESULTS: In this cohort of 94 patients with AC, most had grade 2-3 tumors (84.0%) and PM (84.0%). Fifty patients completed the assay in the presence of identifiable disease, among which ctDNA was detected in 4 of 7 (57.1%), 10 of 16 (62.5%), and 19 of 27 (70.4%) patients with grade 1, 2, and 3 diseases, respectively. Patients who had recently received systemic chemotherapy had ctDNA detected less frequently (7 of 16 [43.8%] v 26 of 34 [76.5%]; odds ratio, 0.22 [95% CI, 0.06 to 0.82]; P = .02). Among 36 patients with complete CRS for grade 2-3 AC-PM, 16 (44.4%) developed recurrence (median follow-up, 19.6 months). ctDNA detection was associated with shorter recurrence-free survival (median 11.3 months v not reached; hazard ratio, 14.1 [95% CI, 1.7 to 113.8]; P = .01) and showed high accuracy for the detection of recurrence (sensitivity 93.8%, specificity 85.0%). ctDNA was more sensitive than carcinoembryonic antigen (62.5%), CA19-9 (25.0%), and CA125 (18.8%) and was the only elevated biomarker in four (25%) patients with recurrence. CONCLUSION: This study revealed a reduced ctDNA detection frequency after systemic therapy and accurate recurrence assessment after CRS. These findings underscore the role of ctDNA as a predictive and prognostic biomarker for grade 2-3 AC-PM management.


Subject(s)
Appendiceal Neoplasms , Circulating Tumor DNA , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Male , Female , Appendiceal Neoplasms/genetics , Appendiceal Neoplasms/blood , Appendiceal Neoplasms/pathology , Appendiceal Neoplasms/therapy , Appendiceal Neoplasms/drug therapy , Middle Aged , Aged , Adult , Neoplasm Recurrence, Local/blood , Aged, 80 and over
7.
JCO Precis Oncol ; 8: e2300456, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691816

ABSTRACT

PURPOSE: Here, we report the sensitivity of a personalized, tumor-informed circulating tumor DNA (ctDNA) assay (Signatera) for detection of molecular relapse during long-term follow-up of patients with breast cancer. METHODS: A total of 156 patients with primary breast cancer were monitored clinically for up to 12 years after surgery and adjuvant chemotherapy. Semiannual blood samples were prospectively collected, and analyzed retrospectively to detect residual disease by ultradeep sequencing using ctDNA assays, developed from primary tumor whole-exome sequencing data. RESULTS: Personalized Signatera assays detected ctDNA ahead of clinical or radiologic relapse in 30 of the 34 patients who relapsed (patient-level sensitivity of 88.2%). Relapse was predicted with a lead interval of up to 38 months (median, 10.5 months; range, 0-38 months), and ctDNA positivity was associated with shorter relapse-free survival (P < .0001) and overall survival (P < .0001). All relapsing triple-negative patients (n = 7/23) had a ctDNA-positive test within a median of 8 months (range, 0-19 months), while the 16 nonrelapsed patients with triple-negative breast cancer remained ctDNA-negative during a median follow-up of 58 months (range, 8-99 months). The four patients who had negative tests before relapse all had hormone receptor-positive (HR+) disease and conversely, five of the 122 nonrelapsed patients (all HR+) had an occasional positive test. CONCLUSION: Serial postoperative ctDNA assessment has strong prognostic value, provides a potential window for earlier therapeutic intervention, and may enable more effective monitoring than current clinical tests such as cancer antigen 15-3. Our study provides evidence that those with serially negative ctDNA tests have superior clinical outcomes, providing reassurance to patients with breast cancer. For select cases with HR+ disease, decisions about treatment management might require serial monitoring despite the ctDNA-positive result.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/surgery , Circulating Tumor DNA/blood , Middle Aged , Prognosis , Follow-Up Studies , Aged , Adult , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Retrospective Studies , Aged, 80 and over
8.
Anal Chim Acta ; 1308: 342578, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740462

ABSTRACT

Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.


Subject(s)
DNA , Neoplasms , Liquid Biopsy/methods , Humans , DNA/chemistry , Neoplasms/diagnosis , Neoplasms/pathology , Biomarkers, Tumor/analysis , Neoplastic Cells, Circulating/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/analysis , Exosomes/chemistry
9.
Pak J Pharm Sci ; 37(1): 123-128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741408

ABSTRACT

The study aimed to investigate the effects of aspirin on patients with metastatic colorectal cancer, focusing on circulating tumor DNA levels and bone tissue. Two groups (A and B) of ten patients with osteoporosis were selected for the study. Bone tissue samples were obtained from the patients and cultured under sterile conditions. The aspirin group showed a significant decrease in circulating tumor DNA levels and an increase in bone tissue density compared to the control group. Additionally, osteoblast apoptosis was reduced, while proliferation was enhanced in the aspirin group. The protein pAkt related to the PI3K/Akt signaling pathway was upregulated in the aspirin group. These results indicate that aspirin can effectively lower circulating tumor DNA levels, promote bone tissue proliferation, inhibit apoptosis, and activate the PI3K/Akt signaling pathway, thereby influencing bone cell function. These findings provide a basis for aspirin's potential application in treating metastatic colorectal cancer and encourage further research on its mechanism and clinical use.


Subject(s)
Apoptosis , Aspirin , Circulating Tumor DNA , Colorectal Neoplasms , Humans , Aspirin/pharmacology , Aspirin/therapeutic use , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Male , Female , Middle Aged , Apoptosis/drug effects , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Aged , Signal Transduction/drug effects , Osteoblasts/drug effects , Osteoblasts/pathology , Osteoblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Bone Density/drug effects , Osteoporosis/drug therapy
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732099

ABSTRACT

Medulloblastoma is the most common malignant brain tumor in childhood. Initial treatment generally includes surgery, irradiation, and chemotherapy. Approximately 20-30% of patients will experience a recurrence, which portends a very poor prognosis. The current standard of care for evaluation for relapse includes radiographic surveillance with magnetic resonance imaging at regular intervals. The presence of circulating tumor DNA in the cerebrospinal fluid has been demonstrated to be a predictor of a higher risk of progression in a research setting for patients with medulloblastoma treated on a prospective single institution clinical trial. We have previously published and clinically validated a liquid-biopsy-based genetic assay utilizing low-pass whole genome sequencing to detect copy number alterations in circulating tumor DNA. Here, we present two teenage patients with posterior fossa medulloblastoma with recurrent disease who have been monitored with serial liquid biopsies showing tumor evolution over time, demonstrating the clinical utility of these approaches.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Neoplasm Recurrence, Local , Humans , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/genetics , Medulloblastoma/diagnosis , Medulloblastoma/pathology , Medulloblastoma/diagnostic imaging , Liquid Biopsy/methods , Neoplasm Recurrence, Local/cerebrospinal fluid , Neoplasm Recurrence, Local/genetics , Adolescent , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/diagnosis , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/genetics , Male , Circulating Tumor DNA/cerebrospinal fluid , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Female , Disease Progression , Magnetic Resonance Imaging
11.
JAMA Otolaryngol Head Neck Surg ; 150(5): 444-450, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38573644

ABSTRACT

Importance: The utility of preoperative circulating tumor tissue-modified viral human papillomavirus DNA (TTMV-HPV DNA) levels in predicting human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC) disease burden is unknown. Objective: To determine if preoperative circulating tumor HPV DNA (ctHPVDNA) is associated with disease burden in patients with HPV+ OPSCC who have undergone transoral robotic surgery (TORS). Design, Setting, and Participants: This cross-sectional study comprised patients with HPV+ OPSCC who underwent primary TORS between September 2021 and April 2023 at one tertiary academic institution. Patients with treatment-naive HPV+ OPSCC (p16-positive) and preoperative ctHPVDNA levels were included, and those who underwent neck mass excision before ctHPVDNA collection were excluded. Main Outcomes and Measures: The main outcome was the association of increasing preoperative ctHPVDNA levels with tumor size and lymph node involvement in surgical pathology. The secondary outcome was the association between preoperative ctHPVDNA levels and adverse pathology, which included lymphovascular invasion, perineural invasion, or extranodal extension. Results: A total of 70 patients were included in the study (65 men [93%]; mean [SD] age, 61 [8] years). Baseline ctHPVDNA levels ranged from 0 fragments/milliliter of plasma (frag/mL) to 49 452 frag/mL (median [IQR], 272 [30-811] frag/mL). Overall, 58 patients (83%) had positive results for ctHPVDNA, 1 (1.4%) had indeterminate results, and 11 (15.6%) had negative results. The sensitivity of detectable ctHPVDNA for identifying patients with pathology-confirmed HPV+ OPSCC was 84%. Twenty-seven patients (39%) had pathologic tumor (pT) staging of pT0 or pT1, 34 (49%) had pT2 staging, and 9 patients (13%) had pT3 or pT4 staging. No clinically meaningful difference between detectable and undetectable preoperative ctHPVDNA cohorts was found for tumor size or adverse pathology. Although the median preoperative ctHPVDNA appeared to be higher in pT2 through pT4 stages and pN1 or pN2 stages, effect sizes were small (pT stage: η2, 0.002 [95% CI, -1.188 to 0.827]; pN stage: η2, 0.043 [95% CI, -0.188 to 2.600]). Median preoperative log(TTMV-HPV DNA) was higher in active smokers (8.79 [95% CI, 3.55-5.76]), compared with never smokers (5.92 [95% CI, -0.97 to 1.81]) and former smokers (4.99 [95% CI, 0.92-6.23]). Regression analysis did not show an association between tumor dimension or metastatic lymph node deposit size and preoperative log(TTMV-HPV DNA). After univariate analysis, no association was found between higher log(TTMV-HPV DNA) levels and adverse pathology. Conclusions and Relevance: In this cross-sectional study, preoperative ctHPVDNA levels were not associated with disease burden in patients with HPV+ OPSCC who underwent TORS.


Subject(s)
DNA, Viral , Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Male , Female , Cross-Sectional Studies , Oropharyngeal Neoplasms/virology , Oropharyngeal Neoplasms/surgery , Oropharyngeal Neoplasms/pathology , Oropharyngeal Neoplasms/blood , Middle Aged , DNA, Viral/analysis , DNA, Viral/blood , Papillomavirus Infections/virology , Papillomavirus Infections/blood , Papillomavirus Infections/complications , Aged , Robotic Surgical Procedures , Circulating Tumor DNA/blood , Preoperative Period , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/blood , Squamous Cell Carcinoma of Head and Neck/surgery , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Burden , Papillomaviridae/genetics
12.
Anal Chem ; 96(18): 6930-6939, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652001

ABSTRACT

Circulating tumor DNA (ctDNA) holds great promise as a noninvasive biomarker for cancer diagnosis, treatment, and prognosis. However, the accurate and specific quantification of low-abundance ctDNA in serum remains a significant challenge. This study introduced, for the first time, a novel exponential amplification reaction (EXPAR)-assisted CRISPR/Cas12a-mediated ratiometric dual-signal electrochemical biosensor for ultrasensitive and reliable detection of ctDNA. To implement the dual-signal strategy, a signal unit (ssDNA-MB@Fc/UiO-66-NH2) was prepared, consisting of methylene blue-modified ssDNA as the biogate to encapsulate ferrocene signal molecules within UiO-66-NH2 nanocarriers. The presence of target ctDNA KRAS triggered EXPAR amplification, generating numerous activators for Cas12a activation, resulting in the cleavage of ssDNA-P fully complementary to the ssDNA-MB biogate. Due to the inability to form a rigid structure dsDNA (ssDNA-MB/ssDNA-P), the separation of ssDNA-MB biogate from the UiO-66-NH2 surface was hindered by electrostatic interactions. Consequently, the supernatant collected after centrifugation exhibited either no or only a weak presence of Fc and MB signal molecules. Conversely, in the absence of the target ctDNA, the ssDNA-MB biogate was open, leading to the leakage of Fc signal molecules. This clever ratiometric strategy with Cas12a as the "connector", reflecting the concentration of ctDNA KRAS based on the ratio of the current intensities of the two electroactive signal molecules, enhanced detection sensitivity by at least 60-300 times compared to single-signal strategies. Moreover, this strategy demonstrated satisfactory performance in ctDNA detection in complex human serum, highlighting its potential for cancer diagnosis.


Subject(s)
Biosensing Techniques , Circulating Tumor DNA , Electrochemical Techniques , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/chemistry , Limit of Detection , Endodeoxyribonucleases/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
13.
Int J Cancer ; 155(2): 298-313, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38602058

ABSTRACT

Treatment resistance remains a major issue in aggressive prostate cancer (PC), and novel genomic biomarkers may guide better treatment selection. Circulating tumor DNA (ctDNA) can provide minimally invasive information about tumor genomes, but the genomic landscape of aggressive PC based on whole-genome sequencing (WGS) of ctDNA remains incompletely characterized. Thus, we here performed WGS of tumor tissue (n = 31) or plasma ctDNA (n = 10) from a total of 41 aggressive PC patients, including 11 hormone-naïve, 15 hormone-sensitive, and 15 castration-resistant patients. Across all variant types, we found progressively more altered tumor genomic profiles in later stages of aggressive PC. The potential driver genes most frequently affected by single-nucleotide variants or insertions/deletions included the known PC-related genes TP53, CDK12, and PTEN and the novel genes COL13A1, KCNH3, and SENP3. Etiologically, aggressive PC was associated with age-related and DNA repair-related mutational signatures. Copy number variants most frequently affected 14q11.2 and 8p21.2, where no well-recognized PC-related genes are located, and also frequently affected regions near the known PC-related genes MYC, AR, TP53, PTEN, and BRCA1. Structural variants most frequently involved not only the known PC-related genes TMPRSS2 and ERG but also the less extensively studied gene in this context, PTPRD. Finally, clinically actionable variants were detected throughout all stages of aggressive PC and in both plasma and tissue samples, emphasizing the potential clinical applicability of WGS of minimally invasive plasma samples. Overall, our study highlights the feasibility of using liquid biopsies for comprehensive genomic characterization as an alternative to tissue biopsies in advanced/aggressive PC.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Prostatic Neoplasms , Whole Genome Sequencing , Humans , Male , Whole Genome Sequencing/methods , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Middle Aged , Biomarkers, Tumor/genetics , DNA Copy Number Variations , Mutation , Aged, 80 and over , Genomics/methods
14.
Biomarkers ; 29(4): 194-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644767

ABSTRACT

INTRODUCTION: Methylated circulating tumour DNA (ctDNA) blood tests for BCAT1/IKZF1 (COLVERA) and SEPT9 (Epi proColon) are used to detect colorectal cancer (CRC). However, there are no ctDNA assays approved for other gastrointestinal adenocarcinomas. We aimed to characterize BCAT1, IKZF1 and SEPT9 methylation in different gastrointestinal adenocarcinoma and non-gastrointestinal tumours to determine if these validated CRC biomarkers might be useful for pan-gastrointestinal adenocarcinoma detection. METHODS: Tissue DNA methylation data from colorectal (COAD, READ), gastroesophageal (ESCA, STAD), pancreatic (PAAD) and cholangiocarcinoma (CHOL) adenocarcinoma cohorts within The Cancer Genome Atlas were used for differential methylation analyses. Clinicodemographic predictors of BCAT1, IKZF1 and SEPT9 methylation, and the selectivity of hypermethylated BCAT1, IKZF1 and SEPT9 for colorectal adenocarcinomas in comparison to other cancers were each explored with beta regression. RESULTS: Hypermethylated BCAT1, IKZF1 and SEPT9 were each differentially methylated in colorectal and gastroesophageal adenocarcinomas. IKZF1 was differentially methylated in pancreatic adenocarcinoma. Hypermethylated DNA biomarkers BCAT1, IKZF1 and SEPT9 were largely stable across different stages of disease and were highly selective for gastrointestinal adenocarcinomas relative to other cancer types. DISCUSSION: Existing CRC methylated ctDNA blood tests for BCAT1/IKZF1 and SEPT9 might be usefully repurposed for use in other gastrointestinal adenocarcinomas and warrant further prospective ctDNA studies.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , DNA Methylation , Gastrointestinal Neoplasms , Ikaros Transcription Factor , Septins , Humans , Septins/genetics , Septins/blood , Ikaros Transcription Factor/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Adenocarcinoma/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/blood , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/blood , Male , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Female , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/blood , Cholangiocarcinoma/genetics , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/blood , Middle Aged , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/blood
15.
ACS Sens ; 9(4): 2122-2133, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38602840

ABSTRACT

Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.


Subject(s)
Circulating Tumor DNA , Gold , Graphite , Metal Nanoparticles , Pancreatic Neoplasms , Graphite/chemistry , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Circulating Tumor DNA/analysis , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Biosensing Techniques/methods , Terahertz Spectroscopy/methods , Nucleic Acid Hybridization , Limit of Detection
16.
World J Gastroenterol ; 30(15): 2175-2178, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38681986

ABSTRACT

With the rapid development of science and technology, cell-free DNA (cfDNA) is rapidly becoming an important biomarker for tumor diagnosis, monitoring and prognosis, and this cfDNA-based liquid biopsy technology has great potential to become an important part of precision medicine. cfDNA is the total amount of free DNA in the systemic circulation, including DNA fragments derived from tumor cells and all other somatic cells. Tumor cells release fragments of DNA into the bloodstream, and this source of cfDNA is called circulating tumor DNA (ctDNA). cfDNA detection has become a major focus in the field of tumor research in recent years, which provides a new opportunity for non-invasive diagnosis and prognosis of cancer. In this paper, we discuss the limitations of the study on the origin and dynamics analysis of ctDNA, and how to solve these problems in the future. Although the future faces major challenges, it also contains great potential.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Neoplasms , Humans , Liquid Biopsy/methods , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Neoplasms/blood , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Prognosis , Precision Medicine/methods , Cell-Free Nucleic Acids/blood
17.
Biomolecules ; 14(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672414

ABSTRACT

Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Lung Neoplasms , Neoplastic Cells, Circulating , Small Cell Lung Carcinoma , Humans , Liquid Biopsy/methods , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/diagnosis , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/diagnosis , Immunotherapy/methods , Biomarkers, Tumor/metabolism , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Circulating Tumor DNA/blood , Extracellular Vesicles/metabolism
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673808

ABSTRACT

Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) in relation to inflammatory status in GBM patients and to determine the concentration and average size of DNA fragments typical of tumour-derived DNA fractions. Preoperative plasma samples from 40 patients (GBM 65.0 ± 11.3 years) and 40 healthy controls (HC 70.4 ± 5.4 years) were compared. The cfDNA concentrations and lengths were measured using the electrophoresis platform, and inflammatory indices (NLR, PLR, LMR, and SII) were calculated from complete blood cell analysis. More fragmented cfDNA and 4-fold higher 50-700 bp cfDNA concentrations were detected in GBM patients than in healthy controls. The average cfDNA size in the GBM group was significantly longer (median 336 bp) than in the HC group (median 271 bp). Optimal threshold values were 1265 pg/µL for 50-700 bp cfDNA (AUC = 0.857) and 290 bp for average cfDNA size (AUC = 0.814). A Kaplan-Meier survival curves analysis also demonstrated a higher mortality risk in the GBM group with a cut-off >303 bp cfDNA. This study is the first to have revealed glioblastoma association with high levels of cfDNA > 1000 pg/µL of 50-700 bp in length, which can be aggravated by immunoinflammatory reactivity.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Glioblastoma , Humans , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/mortality , Glioblastoma/genetics , Male , Female , Aged , Middle Aged , Prognosis , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/blood , Brain Neoplasms/blood , Brain Neoplasms/diagnosis , Brain Neoplasms/mortality , Kaplan-Meier Estimate , Case-Control Studies , Circulating Tumor DNA/blood
19.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673836

ABSTRACT

Circulating tumor DNA (ctDNA) is a promising biomarker, reflecting the presence of tumor cells. Sequencing-based detection of ctDNA at low tumor fractions is challenging due to the crude error rate of sequencing. To mitigate this challenge, we developed ultra-deep mutation-integrated sequencing (UMIseq), a fixed-panel deep targeted sequencing approach, which is universally applicable to all colorectal cancer (CRC) patients. UMIseq features UMI-mediated error correction, the exclusion of mutations related to clonal hematopoiesis, a panel of normal samples for error modeling, and signal integration from single-nucleotide variations, insertions, deletions, and phased mutations. UMIseq was trained and independently validated on pre-operative (pre-OP) plasma from CRC patients (n = 364) and healthy individuals (n = 61). UMIseq displayed an area under the curve surpassing 0.95 for allele frequencies (AFs) down to 0.05%. In the training cohort, the pre-OP detection rate reached 80% at 95% specificity, while it was 70% in the validation cohort. UMIseq enabled the detection of AFs down to 0.004%. To assess the potential for detection of residual disease, 26 post-operative plasma samples from stage III CRC patients were analyzed. From this we found that the detection of ctDNA was associated with recurrence. In conclusion, UMIseq demonstrated robust performance with high sensitivity and specificity, enabling the detection of ctDNA at low allele frequencies.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Colorectal Neoplasms , High-Throughput Nucleotide Sequencing , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , High-Throughput Nucleotide Sequencing/methods , Male , Female , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Aged , Middle Aged , Adult , Gene Frequency , Aged, 80 and over , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Sensitivity and Specificity
20.
Cancer Treat Rev ; 126: 102735, 2024 May.
Article in English | MEDLINE | ID: mdl-38613871

ABSTRACT

Since colon cancer has a high rate of shedding of tumour fragments into the blood, several research efforts are now focused on the investigation of the minimal residual disease through the detection of ctDNA to tailor the adjuvant therapy of colon cancer patients and optimize its cost/effectiveness balance. The negative prognostic impact of detectable ctDNA in patients' blood after radical surgery for colon cancer is well established. Several clinical trials adopting heterogeneous designs and techniques are now ongoing to translate promises into daily practice by answering five general questions: i) is a ctDNA-guided decision making efficacious in the post-operative management of colon cancer patients? ii) are de-escalation strategies possible in ctDNA-negative cases? iii) are escalation strategies useful to improve the prognosis of ctDNA-positive patients? iv) when MRD is identified at the end of the adjuvant chemotherapy, is another post-adjuvant systemic therapy efficacious? v) can we exploit ctDNA technologies in the follow up of colon cancer patients? This review focuses on currently ongoing trials and how their results may affect the ctDNA "liquid revolution" of early colon cancer.


Subject(s)
Circulating Tumor DNA , Colonic Neoplasms , Humans , Colonic Neoplasms/drug therapy , Chemotherapy, Adjuvant/methods , Circulating Tumor DNA/blood , Prognosis , Clinical Trials as Topic , Biomarkers, Tumor/genetics , Neoplasm, Residual
SELECTION OF CITATIONS
SEARCH DETAIL
...